Dependence of the Coefficient of Friction on the Sliding Conditions in the High Velocity Range

Abstract
The velocity, normal pressure, and slider size dependence of the coefficient of dry friction of metals in the range of high sliding velocities (V ≥ 1 m/s) is investigated theoretically. Failure of the adhesive junctions by adiabatic shear banding is considered as the underlying process. The concept of asperity shearing by the adiabatic shear banding mechanism represents a new approach to unlubricated high velocity friction. Analytical solutions of a coupled thermomechanical problem are given for two constitutive relations. Numerical solutions for steel-on-steel friction showing a decrease of the coefficient of friction with the sliding velocity for different normal pressures are presented. The model is considered to be adequate in the velocity range of 1–10 m/s where friction enhanced oxidation or surface melting are believed not to interfere with the asperity shearing process.

This publication has 11 references indexed in Scilit: