Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis

Abstract
A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative T06 as they passed through the approximately 2 micrometer diameter focused laser beam. Amplified photoelectron pulses from the photomultiplier are grouped into bins of 360-450 micros in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were used to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. Statistical analyses showed that (i) the number of M13 molecules counted versus concentration was linear with slope = 1, (ii) the average burst duration was consistent with the expected transit time of a single molecule through the laser beam, and (iii) the number of detected molecules was consistent with single molecule detection. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The autocorrelation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of approximately 100 DNA molecules/band or better.