Photosynthesis under osmotic stress

Abstract
1. Increasing the sorbitol concentration in a suspension of intact chloroplasts induced a fast, transient and not very specific efflux of metabolites from chloroplasts to the medium. Stroma proteins were retained by the chloroplasts. 2. Within the first 30 s following hypertonic stress, the chloroplast volume decreased according to the Boyle-Mariotte relation. A subsequent and transient increase suggested some influx of external solute. 3. Dark reactions of intact chloroplasts such as starch degradation and formation of labelled 3-phosphoglycerate from dihydroxyacetone phosphate or ribose-5-phosphate and 14CO2 were inhibited at low water potentials. After chloroplast rupture, the activity of stromal enzymes was decreased by high solute concentrations. Ribulose bisphosphate carboxylase exhibited a decrease of Vmax, while KmCO2 remained unaltered. With sorbitol, sucrose, glycerol or glycinebetaine, 50% inhibition of enzymes was observed at osmotic potentials between 40 and 50 bar, with ethyleneglycol at about 70 bar. With salts such as KCl, 50% inhibition was found at 15 to 20 bar. 4. A comparison between inhibition of photosynthesis in intact chloroplasts and inhibition of enzymes in stroma extracts by solutes supports the notion that inhibition of photosynthesis at high osmotic potentials is mainly a solute effect. Another factor contributing to inhibition of photosynthesis in isolated chloroplasts is the loss of intermediates and cofactors which occurs during rapid osmotic dehydration.