Abstract
The oxylipin jasmonate (JA) regulates many aspects of growth, development, and environmental responses in plants, particularly defense responses against herbivores and necrotrophic pathogens. Mutants of Arabidopsis helped researchers define the biochemical pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA hormone, and demonstrated that JA is required for plant survival of insect and pathogen attacks and for plant fertility. Transcriptional profiling led to the discovery of the JASMONATE ZIM-DOMAIN (JAZ) proteins, which are repressors of JA signaling. JA-Ile relieves repression by promoting binding of the JAZ proteins to the F-box protein CORONATINE INSENSITIVE1 (COI1) and their subsequent degradation by the ubiquitination/26S-proteasome pathway. Although we now have a much better understanding of the molecular mechanism of JA action, many questions remain. Experimental answers to these questions will expand our knowledge of oxylipin signaling in plants and animals and will also...