Protein Kinase D1 Stimulates MEF2 Activity in Skeletal Muscle and Enhances Muscle Performance
- 1 June 2008
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 28 (11), 3600-3609
- https://doi.org/10.1128/mcb.00189-08
Abstract
Skeletal muscle consists of type I and type II myofibers, which exhibit different metabolic and contractile properties. Type I fibers display an oxidative metabolism and are resistant to fatigue, whereas type II fibers are primarily glycolytic and suited for rapid bursts of activity. These properties can be modified by changes in workload, activity, and hormonal stimuli, facilitating muscle adaptation to physiological demand. The MEF2 transcription factor promotes the formation of slow-twitch (type I) muscle fibers in response to activity. MEF2 activity is repressed by class II histone deacetylases (HDACs) and is enhanced by calcium-regulated protein kinases that promote the export of class II HDACs from the nucleus to the cytoplasm. However, the identities of skeletal muscle class II HDAC kinases are not well defined. Here we demonstrate that protein kinase D1 (PKD1), a highly effective class II HDAC kinase, is predominantly expressed in type I myofibers and, when misexpressed in type II myofibers, promotes transformation to a type I, slow-twitch, fatigue-resistant phenotype. Conversely, genetic deletion of PKD1 in type I myofibers increases susceptibility to fatigue. PKD1 cooperates with calcineurin to facilitate slow-twitch-fiber transformation. These findings identify PKD1 as a key regulator of skeletal muscle function and phenotype.Keywords
This publication has 51 references indexed in Scilit:
- Requirement of protein kinase D1 for pathological cardiac remodelingProceedings of the National Academy of Sciences, 2008
- Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibersJournal of Clinical Investigation, 2007
- Regulation of Cardiac Stress Signaling by Protein Kinase D1Molecular and Cellular Biology, 2006
- Essential Role for Protein Kinase D Family Kinases in the Regulation of Class II Histone Deacetylases in B LymphocytesMolecular and Cellular Biology, 2006
- Protein kinase C theta co‐operates with calcineurin in the activation of slow muscle genes in cultured myogenic cellsJournal of Cellular Physiology, 2006
- Phosphorylation of histone deacetylase 7 by protein kinase D mediates T cell receptor–induced Nur77 expression and apoptosisThe Journal of Experimental Medicine, 2005
- Regulation of Muscle Fiber Type and Running Endurance by PPARδPLoS Biology, 2004
- Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibresNature, 2002
- Protein Kinase D Is a Downstream Target of Protein Kinase CθBiochemical and Biophysical Research Communications, 2002
- Expression and Characterization of PKD, a Phorbol Ester and Diacylglycerol-stimulated Serine Protein KinaseJournal of Biological Chemistry, 1995