Large growth Rayleigh-Taylor experiments using shaped laser pulses

Abstract
Larege growth Rayleigh-Taylor (RT) experiments have been conducted by pulse-shaped radiative acceleration of planar fluorosilicone foils with 50-μm wavelength initial surface perturbations. Foils with large-amplitude initial perturbation quickly enter the nonlinear RT regime, and show little growth. Foils with very-small-amplitude initial perturbations grow exponentially for longer, and show much larger growth factors. From comparisons with two-dimensional computer simulations, we deduce that the observed growth is about 60% of that expected for classical RT growth.