Modulation of respiration during brain hypoxia

Abstract
This review is a summary of the effects of brain hypoxia on respiration with a particular emphasis on those studies relevant to understanding the cellular basis of these effects. Special attention is given to mechanisms that may be responsible for the respiratory depression that appears to be the primary sequela of brain hypoxia in animal models. Although a variety of potential mechanisms for hypoxic respiratory depression are considered, emphasis is placed on changes in the neuromodulator constituency of the respiratory neuron microenvironment during hypoxia as the primary cause of this phenomenon. Hypoxia is accompanied by a net increase in neuronal inhibition due to both decreased excitatory and increased inhibitory neuromodulator levels. A survey of hypoxia-tolerant cellular systems and organisms suggests that hypoxic respiratory depression may be a manifestation of the depression of cellular metabolism, which appears to be a major adaptation to limited oxygen availability in these systems.