Molecular X-ray Spectra of Sulfur and Chlorine Bearing Substances

Abstract
The interpretation and use of x-ray photon spectra of substances containing second row elements has utilized a number of theoretical models. These models may be divided into three basic categories, namely, the isolated atom model, various molecular models, and a number of solid state models, it is the purpose of this paper to examine critically the validity and limitations of molecular models for interpreting published x-ray photon spectra and spectra obtained by this group on chlorine and sulfur bearing substances.Chlorine and sulfur bearing substances were chosen for at least three important reasons. First, a great deal of published experimental data already exists on the Kα, Kβ, and L2, 3 transitions of these substances. Second, motivated in part by the long standing controversy concerning possible 3d orbital participation in the bonding of second row elements, there are extensive quantum mechanical calculations for ions containing sulfur and chlorine via simple molecular orbital concepts. Thirdj the availability of accurate photoelectron spectroscopic data on these substances now permits a detailed quantitative comparison of x-ray photon transitions with quantum mechanical calculations.Detailed evaluation along these lines indicates that for many substances the theoretically calculated energy values are frequently within a few electron volts (or less) of the experimentally observed energies. This study, therefore, tends to substantiate a viewpoint suggested by some recently; namely, that for many substances the starting point in interpreting most of the basic features of soft x-ray spectra should be based upon molecular bonding approaches.