Wall Shear Stress Inference From Two and Three-Dimensional Turbulent Boundary Layer Velocity Profiles

Abstract
A method is developed to infer a local wall shear stress from a two-dimensional turbulent boundary layer velocity profile using all near-wall data with the Spalding single formula law of the wall. The method is used to broaden the Clauser chart scheme by providing for the inclusion of data in the laminar sublayer and transition region, as well as the data in the fully turbulent near-wall flow region. For a skewed velocity profile typical of pressure driven three-dimensional turbulent boundary layer flows, the method is extended to infer a wall shear stress for a three-dimensional turbulent boundary layer. Either wall shear stress or shear velocity values are calculated for two different sets of three-dimensional experimental data, with good agreement found between calculated and experimental results.