Fidelity of DNA ligation: a novel experimental approach based on the polymerisation of libraries of oligonucleotides
- 15 September 1998
- journal article
- Published by Oxford University Press (OUP) in Nucleic Acids Research
- Vol. 26 (18), 4259-4266
- https://doi.org/10.1093/nar/26.18.4259
Abstract
Complete libraries of oligonucleotides were used as substrates for Thermus thermophilus DNA ligase, on a M13mp18 ssDNA template. A 17mer primer was used to start a polymerisation process. Ladders of ligation products were analysed by gel electrophoresis. Octa-, nona- and decanucleotide libraries were compared. Nonanucleotides were optimum for polymerisation and up to 15 monomers were ligated. The fidelity of incorporation was studied by sequencing 28 clones (2268 bases) of nonanucleotide polymers, 12 monomers in length. Of the ligated monomers, 79% were the correct complementary sequence. In a total of 57 (2.5%) mispaired bases, there was a strong bias to G.T, G.A, G.G and A.G mismatches. Of the mismatches, 86% were found to be purines on the incoming oligonucleotide, of which 71% were G. There is evidence for clustering of mismatches within specific 9mers and at specific positions within these 9mers. The most frequent mismatches were at the 5'-terminus of the oligonucleotide, followed by the central position. We suggest that sequence selection was imposed by the ligase and not just by base pairing interactions. The ligase directs polymerisation in the 3' to 5' direction which we propose is linked to its role in lagging strand DNA replication.Keywords
This publication has 20 references indexed in Scilit:
- Closing the gap on DNA ligaseStructure, 1996
- Purification and Characterization of DNA Ligase III from Bovine TestesJournal of Biological Chemistry, 1995
- DNA ligase I from Saccharomyces cerevisiae: physical and biochemical characterization of the CDC9 gene productBiochemistry, 1992
- Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: Evaluation using experimental modelsGenomics, 1992
- FIDELITY MECHANISMS IN DNA REPLICATIONAnnual Review of Biochemistry, 1991
- Specificity of the nick-closing activity of bacteriophage T4 DNA ligaseGene, 1989
- Recent studies of the fidelity of DNA synthesisBiochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1988
- Nicks 3′ or 5′ to AP sites or to mispaired bases, and one-nucleotide gaps can be sealed by T4 DNA ligaseNucleic Acids Research, 1987
- Fidelity of DNA SynthesisAnnual Review of Biochemistry, 1982
- Complementary base pairing and the origin of substitution mutationsNature, 1976