Modulation of Anxiety and Neuropeptide Y-Y1 Receptors by Antisense Oligodeoxynucleotides

Abstract
The function of neuropeptide Y, one of the most abundant peptide transmitters of the mammalian brain, remains unclear because of a lack of specific receptor antagonists. An antisense oligodeoxynucleotide corresponding to the NH2-terminus of the rat Y1 receptor was constructed and added to cultures of rat cortical neurons. This treatment resulted in a reduced density of Y1 (but not Y2) receptors and diminished the decrease in adenosine 3',5'-monophosphate (cAMP) usually seen after Y1 receptor activation. Repeated injection of the same oligodeoxynucleotide into the lateral cerebral ventricle of rats was followed by a similar reduction of cortical Y1 (but not Y2) receptors. Such antisense-treated animals displayed behavioral signs of anxiety. Thus, specific inhibition of neurotransmitter receptor expression can be accomplished in the living brain and demonstrates that altered central neuropeptide Y transmission produces an anxiety-like state.