Abstract
Eigen-points estimates the image-plane locations of fiduciary points on an object. By estimating multiple locations simultaneously, eigen-points exploits the interdependence between these locations. This is done by associating neighboring, inter-dependent control-points with a model of the local appearance. The model of local appearance is used to find the feature in new unlabeled images. Control-point locations are then estimated from the appearance of this feature in the unlabeled image. The estimation is done using an affine manifold model of the coupling between the local appearance and the local shape. Eigen-points uses models aimed specifically at recovering shape from image appearance. The estimation equations are solved non-iteratively, in a way that accounts for noise in the training data and the unlabeled images and that accounts for uncertainty in the distribution and dependencies within these noise sources.

This publication has 5 references indexed in Scilit: