Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

Top Cited Papers
Open Access
Abstract
Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Cartomizer contents and aerosols were analyzed using light and electron microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and inductively coupled plasma optical emission spectrometry. The filament, a nickel-chromium wire, was coupled to a thicker copper wire coated with silver. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrophoretic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1 µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100 nm) of tin, chromium and nickel. The concentrations of nine of eleven elements in EC aerosol were higher than or equal to the corresponding concentrations in conventional cigarette smoke. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. The presence of metal and silicate particles in cartomizer aerosol demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.