CELL ELONGATION IN THE CULTURED EMBRYONIC CHICK LENS EPITHELIUM WITH AND WITHOUT PROTEIN SYNTHESIS

Abstract
Previous studies have shown that cells in the 6-day old embryonic chick lens epithelium elongate in tissue culture. In the present study, the time course of elongation during the 1st day of cultivation has been examined histologically. Cultured epithelia were also treated with cycloheximide or colchicine in order to determine if cell elongation depends on new protein synthesis and on the utilization of microtubules, respectively. In the first 5 hr of culture, the mean cell length increased from 11 micro to 21 micro. Subsequently, elongation was slower; the mean cell length was 28 micro after 24 hr in culture. Continuous exposure to cycloheximide did not inhibit the initial doubling of cell length, but did prevent further elongation. By contrast, colchicine inhibited elongation almost immediately. When added after the cell length had doubled, cycloheximide and colchicine each inhibited further elongation; the treated cells remained columnar. Radioautographic and electrophoretic tests showed that protein synthesis was not appreciably affected by colchicine, but was suppressed by cycloheximide. Electron microscopic examination revealed that microtubules oriented along surface membranes were present in epithelia cultured with serum alone and with cycloheximide, but not in those incubated with colchicine. These results indicate that the early stages of cell elongation in the cultured lens epithelium require an initial assembly and organization of preexisting microtubular elements and that continued elongation depends, in addition, on the de novo synthesis of protein, possibly microtubule protein.