Topological surface states protected from backscattering by chiral spin texture
Top Cited Papers
- 9 August 2009
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 460 (7259), 1106-1109
- https://doi.org/10.1038/nature08308
Abstract
Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin–orbit coupling1,2,3,4,5 inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. A key predicted feature of such spin-textured boundary states is their insensitivity to spin-independent scattering, which is thought to protect them from backscattering and localization. Recently, experimental and theoretical efforts have provided strong evidence for the existence of both two- and three-dimensional classes of such topological insulator materials in semiconductor quantum well structures6,7,8 and several bismuth-based compounds9,10,11,12,13, but so far experiments have not probed the sensitivity of these chiral states to scattering. Here we use scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy to visualize the gapless surface states in the three-dimensional topological insulator Bi1-xSbx, and examine in detail the influence of scattering from disorder caused by random alloying in this compound. We show that, despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observations demonstrate that the chiral nature of these states protects the spin of the carriers. These chiral states are therefore potentially useful for spin-based electronics, in which long spin coherence is critical14, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing15,16.Keywords
All Related Versions
This publication has 26 references indexed in Scilit:
- Observation of Unconventional Quantum Spin Textures in Topological InsulatorsScience, 2009
- Surface states and topological invariants in three-dimensional topological insulators: Application toPhysical Review B, 2008
- A topological Dirac insulator in a quantum spin Hall phaseNature, 2008
- Quantum Spin Hall Insulator State in HgTe Quantum WellsScience, 2007
- Topological insulators with inversion symmetryPhysical Review B, 2007
- Topological invariants of time-reversal-invariant band structuresPhysical Review B, 2007
- Topological Insulators in Three DimensionsPhysical Review Letters, 2007
- Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum WellsScience, 2006
- Quantum Spin Hall EffectPhysical Review Letters, 2006
- Topological Order and the Quantum Spin Hall EffectPhysical Review Letters, 2005