METABOLISM OF ANDROGENS IN VITRO BY HUMAN FOETAL SKIN

Abstract
SUMMARY: Fresh scalp, genital, chest and axillary skin from human foetuses of 12–41 weeks' maturity was incubated in Krebs' improved Ringer I medium with [7α-3H]dehydroepiandrosterone, [7α-3H]testosterone and [7α-3H]androstenedione. The metabolites identified were androstenedione, 5α-androstane-3,17-dione, androsterone, 3-epiandrosterone, 5α-dihydrotestosterone, 5α-androstane-3α,17β-diol, 5α-androstane-3β,17β-diol, 5-androstene-3β,17β-diol and testosterone. The results provide evidence for the presence of 3β-hydroxysteroid dehydrogenase, Δ4–5 isomerase, 17β-hydroxysteroid dehydrogenase, Δ4-3-oxosteroid-5α-reductase and 3α-hydroxysteroid dehydrogenase in human foetal skin. There were quantitative differences in the various enzyme activities between different body sites and skin specimens of different gestational age. 5α-Reductase activity was particularly high in genital skin. 3β-Hydroxysteroid dehydrogenase Δ4–5 isomerase activity was low in skin from a 12-week foetus, but high in skin specimens from 28-, 38- and 41-week foetuses. 17β-Hydroxysteroid dehydrogenase activity was already high in the skin of the 12-week foetus and remained so in the older foetuses. These results were correlated with the development of the foetal sebaceous glands, and were in general agreement with a parallel enzyme histochemical study. The role of androgen metabolism in human foetal skin is discussed.