Excessive apoptosis of guinea pig colonocytes may lead to an imbalance between phagocytosis and degradation in vivo

Abstract
The success or failure of the clearance of apoptotic cell remains depends on the ability of phagocytic cells to recognize, phagocytoze, and digest these remains prior to their lysis, which would cause tissue inflammation. We have recently shown that, after mass-induced apoptosis of guinea pig colonocytes in vivo, phagocytosis by resident macrophages, although efficient, does not prevent a pre-inflammatory response of the mucosa. The present study has investigated the cause(s) of this clearance failure. Immunohistochemistry and transmission electron microscopy were applied. Antibodies directed against the epithelial plasma membrane protein E-cadherin, the lysosomal membrane protein LAMP-1, and the lysosomal matrix protease cathepsin-D were used. The results revealed that: (1) anti-E-cadherin labeled the membrane of epithelial apoptotic bodies internalized in macrophages, (2) double and triple labeling demonstrated that the anti-LAMP-1 and anti-cathepsin-D antibodies recognized and were co-localized in lysosomes and/or phagolysosomes in macrophages but left E-cadherin-positive structures unlabeled, (3) the more numerous were the E-cadherin-positive inclusions in macrophages, the smaller was the number of those that stained positive for lysosomal markers. In parallel with electron microscopy, these findings showed that not all apoptotic bodies phagocytozed by macrophages were subsequently digested, suggesting that the phagocytotic ability of these cells was not matched by their digestive capability.