Photorefractive effects and light-induced charge migration in barium titanate
- 1 March 1980
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 51 (3), 1297-1305
- https://doi.org/10.1063/1.327824
Abstract
We propose a new theoretical model for the light‐induced migration of charges which mediates the ’’photorefractive effect’’ (light‐induced refractive index change) in barium titanate and other crystals. We also present experimental results of various effects of this light‐induced charge migration in a single‐domain crystal of barium titanate, specifically, (1) energy transfer between two intersecting optical beams, (2) optical four‐wave mixing and optical‐beam phase conjugation, (3) erasure of spatial patterns of photorefractive index variations, and (4) photoconductivity. The theoretical model predicts the observed dependences of these effects on (1) beam intensities, directions, and polarizations, (2) crystal orientation, and (3) on an externally applied dc electric field. Time dependences of transients as well as steady‐state magnitudes are predicted. In this model, identical charges migrate by hopping between adjacent sites, with a hopping rate proportional to the total light intensity at the starting site. The net hopping rate varies with the local electric potential that is calculated self‐consistently from the charge migration pattern. In barium titanate the charges are positive with a density of (1.90.2) ×1016 cm−3 at 514 nm. The origin of the charges and sites is at present unknown. The hopping rate constant determined from optical beam interactions is used to predict the observed photoconductivity of 1.3×10−10 cm Ω−1 W−1 at 514 nm.Keywords
This publication has 17 references indexed in Scilit:
- Four wave nonlinear optical mixing as real time holographyOptics Communications, 1978
- Generation of time-reversed wave fronts by nonlinear refraction*Journal of the Optical Society of America, 1977
- A nonlinear coupled-wave theory of holographic storage in ferroelectric materialsJournal of Applied Physics, 1975
- Coupled-Wave Analysis of Holographic Storage in LiNbO3Journal of Applied Physics, 1972
- Electric Field Distriutions in Dielectrics, with Special Emphasis on Near-Surface Regions in FerroelectricsPhysical Review B, 1971
- Coupled Wave Theory for Thick Hologram GratingsBell System Technical Journal, 1969
- Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3Journal of Applied Physics, 1969
- Dielectric and optical properties of melt-grown BaTiO3Journal of Physics and Chemistry of Solids, 1968
- OPTICALLY-INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3Applied Physics Letters, 1966
- LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIALApplied Physics Letters, 1964