Experimental acute pancreatitis in PAP/HIP knock-out mice

Abstract
Background and aims: PAP/HIP was first reported as an additional pancreatic secretory protein expressed during the acute phase of pancreatitis. It was shown in vitro to be anti-apoptotic and anti-inflammatory. This study aims to look at whether PAP/HIP plays the same role in vivo. Methods: A model of caerulein-induced pancreatitis was used to compare the outcome of pancreatitis in PAP/HIP−/− and wild-type mice. Results: PAP/HIP−/− mice showed the normal phenotype at birth and normal postnatal development. Caerulein-induced pancreatic necrosis was, however, less severe in PAP/HIP−/− mice than in wild-type mice, as judged by lower amylasemia and lipasemia levels and smaller areas of necrosis. On the contrary, pancreas from PAP/HIP−/− mice was more sensitive to apoptosis, in agreement with the anti-apoptotic effect of PAP/HIP in vitro. Surprisingly, pancreatic inflammation was more extensive in PAP/HIP−/− mice, as judged from histological parameters, increased myeloperoxidase activity and increased pro-inflammatory cytokine expression. This result, in apparent contradiction with the limited necrosis observed in these mice, is, however, in agreement with the anti-inflammatory function previously reported in vitro for PAP/HIP. This is supported by the observation that activation of the STAT3/SOCS3 pathway was strongly decreased in the pancreas of PAP/HIP−/− mice and by the reversion of the apoptotic and inflammatory phenotypes upon administration of recombinant PAP/HIP to PAP/HIP−/− mice. Conclusion: The anti-apoptotic and anti-inflammatory functions described in vitro for PAP/HIP have physiological relevance in the pancreas in vivo during caerulein-induced pancreatitis.