Genetic analysis of larval feeding behaviour inDrosophila melanogaster: II. Growth relations and competition between selected lines

Abstract
Growth relations of lines selected for fast or slow larval feeding rate have been compared with those in the genetically heterogeneous control base population from which they were derived. Larvae of the slow strain have reduced growth rate and reach their critical weight for pupation later than unselected larvae. Larvae of the fast strain attain their critical weight at the same time as the unselected control larvae, suggesting that growth rate in the precritical period of development is already maximized in the base population and cannot be improved by increasing food intake. This constraint does not apply to the fixed period of post-critical growth however, since fast feeding larvae give rise to larger adult flies than the controls.Larval feeding rate is affected by genes located on all three major chromosomes. The small fourth chromosome has negligible effect. Selection for slow feeding rate has led to an increase in the frequency of recessive genes affecting the character. High scores of larvae selected for fast feeding rate depend upon interactions between non-homologous selected chromosomes which individually have little effect. Larval feeding rate in the control unselected population appears to be buffered, firstly by epistatic interactions against the effects of chromosomes tending to promote ‘supra-optimal’ feeding rate and, secondly, by dominance against chromosomes promoting a lowering of feeding rate.Under conditions of scramble type competition between the selected lines for limited resources, fast feeding larvae have a higher survival rate, and complete their period of larval development earlier to give larger adult flies than their slow feeding competitors. The contribution of larval feeding rate to competitive ability at different levels is discussed, and it is suggested that the effects of change in this behavioural character may be far reaching.