The Survival of AirborneSerratia marcescensin Urban Concentrations of Sulfur Dioxide

Abstract
Aerosols of Serratia marcescens ATCC 274 were suspended in a 709L rotating drum at 20 ± 1 °C and high to mid-range relative humidities. At specified times after bacterial aerosolization, sulfur dioxide was added to concentrations of 2.5, or 5 mg/m3. Viable cell decay rate constants, in control aerosols without added sulfur dioxide, increased rapidly from near 100% to 60% RH in the first hour (termed: young aerosol) of suspension, and from a minimum rate constant at 80% in the succeeding four hours (termed: old aerosol).Upon addition of sulfur dioxide to a cloud of S. marcescens, generally, viable cell decay rate constants increased further. One exception was at 80% relative humidity where maximum resistance to SO2 accelerated death was observed for old aerosols. Cells in young aerosols were particularly sensitive to SO2 addition at mid-range humidities, while in older aerosols the cells were insensitive to up to 5 mg SO2/m3 introduced at high RH; but were up to 10 times more sensitive than cells in young aerosols to a given increase (from 2.5 to 5 mg/m3) in SO2 concentration at mid-range humidities.