Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter.
Open Access
- 1 January 1994
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 14 (1), 686-699
- https://doi.org/10.1128/mcb.14.1.686
Abstract
Members of the MyoD family of helix-loop-helix proteins control expression of the muscle phenotype by regulating the activity of subordinate genes. To investigate processes that control the expression of myogenic factors and regulate the establishment and maintenance of the skeletal muscle phenotype, we have analyzed sequences necessary for transcription of the maternally expressed Xenopus MyoD (XMyoD) gene. A 3.5-kb DNA fragment containing the XMyoDa promoter was expressed in a somite-specific manner in injected frog embryos. The XMyoDa promoter was active in oocytes and cultured muscle cells but not in fibroblasts or nonmuscle cell lines. A 58-bp fragment containing the transcription initiation site, a GC-rich region, and overlapping binding sites for the general transcription factor TFIID and the muscle-specific factor MEF2 was sufficient for muscle-specific transcription. Transcription of the minimal XMyoDa promoter in nonmuscle cells was activated by expression of Xenopus MEF2 (XMEF2) and required binding of both MEF2 and TFIID to the TATA motif. These results demonstrate that the XMyoDa TATA motif is a target for a cell-type-specific regulatory factor and suggests that MEF2 stabilizes and amplifies XMyoDa transcription in mesodermal cells committed to the muscle phenotype.Keywords
This publication has 54 references indexed in Scilit:
- Crystal structure of TFIID TATA-box binding proteinNature, 1992
- Structure and myofiber-specific expression of the rat muscle regulatory gene MRF4Gene, 1992
- Isolation and structural analysis of the rat MyoD geneGene, 1992
- Making muscle in mammalsTrends in Genetics, 1992
- The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1Cell, 1992
- The pituitary-specific regulatory gene GHF1 contains a minimal cell type-specific promoter centered around its TATA box.Genes & Development, 1991
- The cloned RNA polymerase II transcription factor IID selects RNA polymerase III to transcribe the human U6 gene in vitro.Genes & Development, 1991
- The myoD Gene Family: Nodal Point During Specification of the Muscle Cell LineageScience, 1991
- Physical Analysis of Transcription Preinitiation Complex Assembly on a Class II Gene PromoterScience, 1988
- A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoterNature, 1987