Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases.
Open Access
- 1 December 1994
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 94 (6), 2177-2182
- https://doi.org/10.1172/jci117578
Abstract
Gelatinases, belonging to the matrix metalloproteases, contribute to tissue destruction in inflammatory demyelinating disorders of the central nervous system such as multiple sclerosis. We used experimental autoimmune encephalomyelitis (EAE) as an animal model to evaluate the effect of a hydroxamate matrix metalloprotease inhibitor (GM 6001) on inflammatory demyelination. A single dose of the inhibitor, given intraperitoneally, provided sufficient levels in the cerebrospinal fluid of animals with EAE to induce at least a partial inhibition of the gelatinase activity in the cerebrospinal fluid. When administered daily either from the time of disease induction or from the onset of clinical signs, GM 6001 suppressed the development or reversed clinical EAE in a dose-dependent way, respectively. Animals returned to the same clinical course as the nontreated group after cessation of treatment. Animals treated from the onset of clinical signs had normal permeability of the blood-brain barrier, compared with the enhanced permeability in nontreated animals. These results indicate that matrix metalloprotease inhibition can reverse ongoing EAE. This effect appears to be mediated mainly through restoration of the damaged blood-brain barrier in the inflammatory phase of the disease, since, the degree of demyelination and inflammation did not differ between the treatment groups.This publication has 21 references indexed in Scilit:
- Structural biochemistry and activation of matrix metalloproteasesCurrent Opinion in Cell Biology, 1993
- Autoimmune DiseaseScientific American, 1993
- Treatment of alkali-injured rabbit corneas with a synthetic inhibitor of matrix metalloproteinases.1992
- Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disordersJournal of Neuroimmunology, 1992
- Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acidsBiochemistry, 1992
- The pathological evolution of multiple sclerosisNeuropathology and Applied Neurobiology, 1992
- TIMP-2 reduces proteolytic opening of blood-brain barrier by type IV collagenaseBrain Research, 1992
- Pathogenesis of myelin breakdown in demyelinating diseases: role of proteolytic enzymes.1992
- The Development of Rational Strategies for Selective Immunotherapy against Autoimmune Demyelinating DiseaseAdvances in Immunology, 1991
- Studies on the ability of 65-kDa and 92-kDa tumor cell gelatinases to degrade type IV collagen.Journal of Biological Chemistry, 1990