Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet

Abstract
An investigation into the magnitude and direction of the convective velocity in a plane air jet was performed. Convective velocities were obtained from cross-correlation measurements. They are defined as the ratio of the spacing between two hot-wire probes and the time delay between their signals to reach maximum correlation. These velocities were larger in magnitude than the local mean velocities for lateral distances greater than the half-width of the jet. Frequency analysis of the convective velocity indicates that the large-scale eddies move slower than the mean flow while the small scales move faster. Based on the convective velocity vector, broadband ‘convection lines’ were defined and found to point outward with respect to the streamlines for all values of y/b [Gt ] 0·5. Likewise, frequency investigation indicates that ‘convection lines’ point outward for all y/b [Lt ] 1·3 and then inward for larger values of y/b.

This publication has 1 reference indexed in Scilit: