Endosperm Development in Barley: Microtubule Involvement in the Morphogenetic Pathway.

Abstract
An immunofluorescence study of sectioned barley endosperm imaged by confocal laser scanning microscopy provided three-dimensional data on the relationship of microtubules to the cytoplasm, nuclei, and cell walls during development from 4 to 21 days after pollination (DAP). Microtubules play an important role throughout endosperm ontogeny. The syncytium is organized into units of nuclear-cytoplasmic domains by nuclear-based radial microtubule systems that appear to control the pattern of the first anticlinal walls at 5 to 6 DAP. After 7 DAP, phragmoplasts of two origins (interzonal and cytoplasmic) guide wall formation. Large compartments formed by the "free growing" walls in association with cytoplasmic phragmoplasts formed adventitiously at interfaces of opposing microtubule systems are subsequently subdivided by interzonal phragmoplast/cell plates to give rise to the starchy endosperm. During development of the aleurone layer from 8 to 21 DAP, the microtubule cycle is typical of plant histogenesis; cortical microtubules are hooplike, and preprophase bands of microtubules predict the division plane