Testing Iron and Zinc Bioavailability in Genetically Enriched Beans (Phaseolus Vulgaris L.) and Rice (Oryza Sativa L.) in a Rat Model

Abstract
A rat model was used to determine the bioavailability of iron and zinc in bean seeds and rice grain from enriched genotypes of these globally important staple foods. Seed and grain from the genotypes tested (intrinsically radiolabelled with either 59Fe or 65Zn) were cooked, homogenized in water, and lyophilized to dryness. The dried, radiolabelled powder was fed to young male rats in single meals. Bioavailability was calculated from the amount of radiolabelled iron and zinc retained in the rats over a 10-day period as determined each day by whole-body gamma spectrometry assay. The data collected demonstrate that increasing the amount of iron or zinc in enriched rice grain and bean seed significantly increases the amount of iron or zinc bioavailable to rats. Although a rat model is not ideal for determining iron and zinc bioavailability to humans, because rats are much more efficient at absorbing iron and zinc from plant foods than humans, rats can be used to give relative estimates of bioavailable iron and zinc in plant foods. These estimates can be used to rank promising genotypes of staple foods for use in later feeding trials with humans, greatly reducing the numbers of genotypes that would have to be tested in humans without use of the rat model. Ultimately, because of the complexities of determining the bioavailability to humans of iron and zinc in plant foods, human feeding trials performed under free-living conditions should be conducted with the most promising genotypes before these genotypes are released for distribution to breeding programmes worldwide