The Elastic Anisotropy of Crystals
- 1 April 1967
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 38 (5), 2010-2012
- https://doi.org/10.1063/1.1709819
Abstract
Essentially, the elastic properties of all the known crystals are anisotropic. This paper presents a convenient method to describe the degree of the elastic anisotropy in a given cubic crystal and then discusses its practical values. On the basis of the well‐known Voigt and Reuss schemes to average the single‐crystal elastic constants for polycrystalline behavior, the degree of elastic anisotropy has been defined as A* = [3(A−1)2]/[3(A−1)2+25A], where A is the usual anisotropy factor given by A = 2c44/(c11−c12). It is shown that the present A* has the folowing properties of practical importance: (a) A* is zero for the crystals of the elastic isotropy, i.e., A = 1. (b) For an anisotropic crystal, A* is a single‐valued measure of the elastic anisotropy regardless of whether A < 1 or A > 1. (c) A* gives a relative magnitude of the actual elastic anisotropy possessed by a crystal.Keywords
This publication has 5 references indexed in Scilit:
- Elastic Constants of Tantalum, Tungsten, and MolybdenumPhysical Review B, 1963
- Thermo-elastische Konstanten der Alkalihalogenide vom NaCl-TypThe European Physical Journal A, 1960
- The Elastic Behaviour of a Crystalline AggregateProceedings of the Physical Society. Section A, 1952
- Determination of Elastic Constants in Single Crystals with Especial Reference to Silver ChlorideJournal of Applied Physics, 1950
- Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle .ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1929