High-Angular-Momentum States in Cold Rydberg Gases

Abstract
Cold, dense Rydberg gases produced in a cold-atom trap are investigated using spectroscopic methods and time-resolved electron counting. Optical excitation on the discrete Rydberg resonances reveals long-lasting electron emission from the Rydberg gas ( >20ms). Our observations are explained by lm-mixing collisions between Rydberg atoms and slow electrons that lead to the population of long-lived high-angular-momentum Rydberg states. These atoms thermally ionize slowly and with large probabilities.

This publication has 8 references indexed in Scilit: