Rain Measurement in Hilly Terrain with X-Band Weather Radar Systems: Accuracy of Path-Integrated Attenuation Estimates Derived from Mountain Returns

Abstract
The authors recently showed that when attenuating wavelengths are used mountain returns may allow estimation of path-integrated attenuations (PIAs) between a ground-based weather radar and a given mountain, an application of the well-known Surface Reference Technique originally proposed for spaceborne radar configurations. This information proved to be valuable for the quantitative interpretation of X-band weather radar data in terms of rainfall rate for an urban hydrological application in Marseilles, France. In this paper, a further verification of this concept is presented with the comparison of mountain-derived PIAs and direct measurements obtained by means of a receiving antenna installed in the Balcons de Belledonne mountain ridge near Grenoble, France. Maximum PIAs in the range of 8–16 dB are obtained over the considered 9-km propagation path for various rain events observed between May and July 1997. A physical model of the mountain return power is developed leading to the formulation of ... Abstract The authors recently showed that when attenuating wavelengths are used mountain returns may allow estimation of path-integrated attenuations (PIAs) between a ground-based weather radar and a given mountain, an application of the well-known Surface Reference Technique originally proposed for spaceborne radar configurations. This information proved to be valuable for the quantitative interpretation of X-band weather radar data in terms of rainfall rate for an urban hydrological application in Marseilles, France. In this paper, a further verification of this concept is presented with the comparison of mountain-derived PIAs and direct measurements obtained by means of a receiving antenna installed in the Balcons de Belledonne mountain ridge near Grenoble, France. Maximum PIAs in the range of 8–16 dB are obtained over the considered 9-km propagation path for various rain events observed between May and July 1997. A physical model of the mountain return power is developed leading to the formulation of ...