Anion-binding exosite of human .alpha.-thrombin and fibrin(ogen) recognition

Abstract
Activation of prothrombin to alpha-thrombin generates not only the catalytic site and associated regions but also an independent site (an exosite) which binds anionic substances, such as Amberlite CG-50 resin [cross-linked poly(methylacrylic acid)]. Like human alpha-thrombin with high fibrinogen clotting activity (peak elution at I = 0.40 +/- 0.01 M, pH 7.4, approximately 23 degrees C), catalytically inactivated forms (e.g., i-Pr2P-alpha- and D-Phe-Pro-Arg-CH2-alpha-thrombins) were eluted with only slightly lower salt concentrations (I = 0.36-0.39 M), while gamma-thrombin with very low clotting activity was eluted with much lower concentrations (I = 0.29 M) and the hirudin complex of alpha-thrombin was not retained by the resin. In a similar manner, hirudin complexes of alpha-, i-Pr2P-alpha-, and gamma-thrombin were not retained by nonpolymerized fibrin-agarose resin. Moreover, the ionic strengths for the elution from the CG-50 resin of seven thrombin forms were directly correlated with those from the fibrin resin (y = 0.15 + 0.96x, r = 0.95). In other experiments, the 17 through 27 synthetic peptide of the human fibrinogen A alpha chain was not an inhibitor of alpha-thrombin, while the NH2-terminal disulfide knot (NDSK) fragment was a simple competitive inhibitor of alpha-thrombin with a Ki approximately 3 microM (0.15 M NaCl, pH 7.3, approximately 23 degrees C). These data suggest that alpha-thrombin recognizes fibrin(ogen) by a negatively charged surface, noncontiguous with the A alpha cleavage site but found within the NDSK fragment. Such interaction involving an anion-binding exosite may explain the exceptional specificity of alpha-thrombin for the A alpha cleavage in fibrinogen and alpha-thrombin incorporation into fibrin clots.