Remodeling of Synaptic Structure in Sensory Cortical AreasIn Vivo
Open Access
- 15 March 2006
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 26 (11), 3021-3029
- https://doi.org/10.1523/jneurosci.4454-05.2006
Abstract
Although plastic changes are known to occur in developing and adult cortex, it remains unclear whether these changes require remodeling of cortical circuitry whereby synapses are formed and eliminated or whether they rely on changes in the strength of existing synapses. To determine the structural stability of dendritic spines and axon terminalsin vivo, we chose two approaches. First, we performed time-lapse two-photon imaging of dendritic spine motility of layer 5 pyramidal neurons in juvenile [postnatal day 28 (P28)] mice in visual, auditory, and somatosensory cortices. We found that there were differences in basal rates of dendritic spine motility of the same neuron type in different cortices, with visual cortex exhibiting the least structural dynamics. Rewiring visual input into the auditory cortex at birth, however, failed to alter dendritic spine motility, suggesting that structural plasticity rates might be intrinsic to the cortical region. Second, we investigated the persistence of both the presynaptic (axon terminals) and postsynaptic (dendritic spine) structures in young adult mice (P40–P61), using chronicin vivotwo-photon imaging in different sensory areas. Both terminals and spines were relatively stable, with >80% persisting over a 3 week period in all sensory regions. Axon terminals were more stable than dendritic spines. These data suggest that changes in network function during adult learning and memory might occur through changes in the strength and efficacy of existing synapses as well as some remodeling of connectivity through the loss and gain of synapses.Keywords
This publication has 51 references indexed in Scilit:
- Dynamic Remodeling of Dendritic Arbors in GABAergic Interneurons of Adult Visual CortexPLoS Biology, 2005
- Diverse Modes of Axon Elaboration in the Developing NeocortexPLoS Biology, 2005
- Calcium regulation of actin dynamics in dendritic spinesCell Calcium, 2005
- Ephrin‐A2 and ‐A5 influence patterning of normal and novel retinal projections to the thalamus: Conserved mapping mechanisms in visual and auditory thalamic targetsJournal of Comparative Neurology, 2005
- Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in DendritesNeuron, 2005
- Growth of dendritic spines: a continuing storyCurrent Opinion in Neurobiology, 2005
- Acceleration of visually cued conditioned fear through the auditory pathwayNature Neuroscience, 2004
- Developmental regulation of spine and filopodial motility in primary visual cortex: Reduced effects of activity and sensory deprivationJournal of Neurobiology, 2004
- Visual behaviour mediated by retinal projections directed to the auditory pathwayNature, 2000
- Electron Microscopy of Synaptic Contacts on Dendrite Spines of the Cerebral CortexNature, 1959