Regioselectivity and Quantitative Structure−Activity Relationships for the Conjugation of a Series of Fluoronitrobenzenes by Purified Glutathione S-Transferase Enzymes from Rat and Man
- 1 January 1996
- journal article
- research article
- Published by American Chemical Society (ACS) in Chemical Research in Toxicology
- Vol. 9 (3), 638-646
- https://doi.org/10.1021/tx9501804
Abstract
Quantitative structure-activity relationships (QSAR's) are described for the rate of conjugation of a series of fluoronitrobenzenes with cytosolic as well as with two major alpha and mu class enzymes of rat and human liver, viz., glutathione S-transferases (GST) 1-1, 3-3, A1-1, and M1a-1a. For all purified enzymes studied, the natural logarithm of the rate of conversion of the fluoronitrobenzenes correlates with both the calculated reactivity of the fluoronitrobenzenes for an electrophilic attack (i.e., E(LUMO)) and the calculated relative heat of formation for formation of the respective Meisenheimer complex intermediate (delta delta HF). In addition, the regioselectivity of the reaction was determined and compared. The results obtained strongly support the conclusion that chemical reactivity of the fluoronitrobenzenes is the main factor determining the outcomes of their conversion by all glutathione S-transferase enzymes. The regioselectivities vary only a few percent from one enzyme to another, whereas QSAR lines for all purified enzymes are in the same region and run parallel. This indicates that in the overall reaction the nucleophilic attack of the thiolate anion on the fluoronitrobenzenes, leading to formation of the Meisenheimer complex, is the rate-limiting step in the overall catalysis. The fact that chemical reactivity of the fluoronitrobenzenes is the main factor in setting the outcomes of the overall conversion by the different glutathione S-transferase enzymes implies that extrapolation from rat to results of other species including man, and also from one individual to another, must be feasible. That this is actually the case is clearly demonstrated by the results of the present study.Keywords
This publication has 14 references indexed in Scilit:
- Quantitative Structure-Activity Relationships Based on Computer Calculated Parameters for the Overall Rate of Glutathione S-Transferase Catalyzed Conjugation of a Series of FluoronitrobenzenesChemical Research in Toxicology, 1995
- Molecular Orbital-Based Quantitative Structure-Activity Relationship for the Cytochrome P450-Catalyzed 4-Hydroxylation of Halogenated AnilinesChemical Research in Toxicology, 1994
- Structure Determination and Refinement of Human Alpha Class Glutathione Transferase A1-1, and a Comparison with the Mu and Pi Class EnzymesJournal of Molecular Biology, 1993
- The three-dimensional structure of a glutathione S-transferase from the Mu gene class. Structural analysis of the binary complex of isoenzyme 3-3 and glutathione at 2.2-.ANG. resolutionBiochemistry, 1992
- Frontier orbital study on the 4‐hydroxybenzoate‐3‐hydroxylase‐dependent activity with benzoate derivativesEuropean Journal of Biochemistry, 1992
- Reactivity of chloronitrobenzenes towards glutathione under physiological conditions: The relationship between structure and reaction rateJournal of Pharmaceutical and Biomedical Analysis, 1990
- Development of a19F-n.m.r. method for studies on the invivoandin vitrometabolism of 2-fluoroanilineXenobiotica, 1990
- Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of .sigma.-complex intermediates in nucleophilic aromatic substitution reactionsBiochemistry, 1989
- Differential induction of rat hepatic glutathione S-transferase isoenzymes by hexachlorobenzene and benzyl isothiocyanateBiochemical Pharmacology, 1988
- Tissue sulfhydryl groupsArchives of Biochemistry and Biophysics, 1959