Abstract
The interrelationship between apolipoprotein B in very low density lipoprotein (VLDL-B) and in low density lipoprotein (LDL-B) was studied in seven normal and hyperlipidemic men and women, with purified radioiodinated VLDL. The time-course of the appearance of radioactivity in LDL was followed. As the specific activity curves intersected at the masimal height of the LDL-B curve, it was inferred that all or most LDL-B peptide is derived from VLDL-B peptide. This transfer was further quantitated in seven normotriglyceridemic subjects by simultaneous i.v. injection of purified 131I-VLDL and 125I-LDL. By a deconvolution method, a quantitative description of the rate of entry of 131Ivldl-b into 131I-LDL-B was derived by analysis of 131I-LDL-B and 125I-ldl-b radioactivity in plasma. The results indicate that approximately 90% of VLDL-B mass is converted into LDL-B in subjects with normal serum triglyceride concentrations. The synthetic rates of VLDL-B and LDL-B peptide were simultaneously measured in six normal subjects, and two patients with heterozygous familial hypercholesterolemia (type IIa). The turnover rates for VLDL-B and LDL-B peptide were similar in these subjects. The findings in the three parts of this study were consistent with the view that most if not all VLDL-B is converted into LDL-B peptide, and most if not all LDL-B is derived from VLDL-B peptide in normotriglyceridemic subjects.