Electroanalytical Oxidation ofp‐Coumaric Acid

Abstract
The mechanism of the electrochemical oxidation of p‐coumaric acid on a glassy carbon electrode was investigated using cyclic, differential pulse, and square wave voltammetry at different pHs. The oxidation of p‐coumaric acid is irreversible over the whole pH range. After successive scans, the p‐coumaric acid oxidation product deposits on the electrode surface, forming a polymeric film that undergoes reversible oxidation at a lower potential than p‐coumaric acid. This polymeric film increases in thickness with the number of scans, covering the electrode surface, and impeding the diffusion of the p‐coumaric acid and its oxidation on the electrode. The oxidation of p‐coumaric acid is pH dependent up until values close to the pKa. For pHs higher than pKa, the p‐coumaric acid oxidation process is pH independent. An electroanalytical determination procedure of p‐coumaric in pH 8.7 0.2 M ammonium buffer was developed, and a detection limit, LOD=83 nM, and the limit of quantification, LOQ=250 nM, were obtained.

This publication has 23 references indexed in Scilit: