Ultrafast Carrier Dynamics, Optical Amplification, and Lasing in Nanocrystal Quantum Dots
- 1 December 2001
- journal article
- Published by Springer Nature in MRS Bulletin
- Vol. 26 (12), 998-1004
- https://doi.org/10.1557/mrs2001.256
Abstract
Semiconductor materials are widely used in both optically and electrically pumped lasers. The use of semiconductor quantum wells (QWs) as optical-gain media has resulted in important advances in laser technology. QWs have a two-dimensional, step-like density of electronic states that is nonzero at the band edge, enabling a higher concentration of carriers to contribute to the band-edge emission and leading to a reduced lasing threshold, improved temperature stability, and a narrower emission line. A further enhancement in the density of the band-edge states and an associated reduction in the lasing threshold are in principle possible using quantum wires and quantum dots (QDs), in which the confinement is in two and three dimensions, respectively. In very small dots, the spacing of the electronic states is much greater than the available thermal energy (strong confinement), inhibiting thermal depopulation of the lowest electronic states. This effect should result in a lasing threshold that is temperatureinsensitive at an excitation level of only 1 electron-hole (e-h) pair per dot on average. Additionally, QDs in the strongconfinement regime have an emission wavelength that is a pronounced function of size, adding the advantage of continuous spectral tunability over a wide energy range simply by changing the size of the dots.Keywords
This publication has 21 references indexed in Scilit:
- Optical Gain and Stimulated Emission in Nanocrystal Quantum DotsScience, 2000
- Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor NanocrystalsThe Journal of Physical Chemistry B, 2000
- Quantization of Multiparticle Auger Rates in Semiconductor Quantum DotsScience, 2000
- Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: Implications for quantum-dot lasersPhysical Review B, 1999
- Rapid carrier relaxation in quantum dots characterized by differential transmission spectroscopyPhysical Review B, 1998
- Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dotsPhysical Review B, 1996
- Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe NanocrystalsThe Journal of Physical Chemistry, 1996
- Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallitesJournal of the American Chemical Society, 1993
- Electron relaxation in a quantum dot: Significance of multiphonon processesPhysical Review B, 1992
- Intrinsic mechanism for the poor luminescence properties of quantum-box systemsPhysical Review B, 1991