Early Gene Expression Associated with the Commitment and Differentiation of a Plant Tracheary Element Is Revealed by cDNA–Amplified Fragment Length Polymorphism Analysis[W]

Abstract
Isolated mesophyll cells from Zinnia elegans are induced by auxin and cytokinin to form tracheary elements (TEs) in vitro with high synchrony. To reveal the changing patterns of gene expression during the 48 h of transdifferentiation from meso-phyll to TE cell fate, we used a cDNA–amplified fragment length polymorphism approach to generate expression profiles of >30,000 cDNA fragments. Transcriptional changes of 652 cDNA fragments were observed, of which 304 have no previously described function or sequence identity. Sixty-eight genes were upregulated within 30 min of induction and represent key candidates for the processes that underlie the early stages of commitment and differentiation to a TE cell fate.