Understanding mechanisms underlying human gene expression variation with RNA sequencing

Abstract
There is currently much interest in the understanding of genetic mechanisms that underlie variation at the gene expression level. Two groups reporting in this issue of Nature use RNA sequencing to study global gene expression in two contrasting populations. Pickrell et al. sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals who have been extensively genotyped as part of the HapMap Project. By pooling data from all the individuals it was possible to identify many genetic determinants of variation in gene expression. Montgomery et al. characterize the mRNA fraction of RNA isolated from lymphoblastoid cell lines derived from 63 HapMap individuals of Caucasian origin. They obtain a fine-scale view of the transcriptome and identify genetic variants that affect alternative splicing. There is much interest in understanding the genetic mechanisms that underlie individual variations in gene expression. Here, RNA sequencing has been used to study gene expression in lymphoblastoid cell lines derived from Nigerian individuals for whom extensive genotype information is known. Numerous genetic determinants of variation in gene expression were identified, including variation in transcription, splicing and allele-specific expression. Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal1. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project2. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.