Adaptive linear controller for robotic manipulators

Abstract
This paper presents a new approach to the position and velocity control of a manipulator by using an adaptive controller of the self-tuning type for each joint. The complicated manipulator system is modeled by a set of time series difference equations. The parameters of the models are determined by on-line recursive algorithms, which result from minimizing the sum of the squared equation errors. The adaptive controller of each joint is designed on the basis of the difference equation model and a chosen performance criterion. The controller gains are calculated on-line using the model with the estimated values of system parameters. Simulation results are presented to demonstrate the applicability of the approach. Some aspects of the implementation are also discussed.

This publication has 17 references indexed in Scilit: