Abstract
The concept of degree-day summation was employed in three models of malthusian growth predictive over a range of temperatures. When supplied input data from life table studies conducted at five constant temperatures, the models were able to predict the magnitude and pattern of growth of populations of Tribolium confusum Duval reared under malthusian conditions. The stochastic model, moreover, revealed that the series of chance events found in the course of population growth could explain differences between one population and the next. When computer experiments on the importance of various life table parameters were run, the models revealed the overwhelming importance of time taken to mature on the rate of population growth. The level of fecundity was next in order of importance while population growth was least sensitive to changes in survivorship.