Calcium- and Calmodulin-Regulated Phosphorylation of Soluble and Membrane Proteins from Corn Coleoptiles

Abstract
In vitro phosphorylation of several membrane polypeptides and soluble polypeptides from corn (Zea mays var. Patriot) coleoptiles was promoted by adding Ca2+. Ca2+-promoted phosphorylation of the membrane polypeptides was further increased in the presence of calmodulin. Both Ca2+-stimulated and Ca2+- and calmodulin-stimulated phosphorylations of membrane polypeptides were inhibited by chlorpromazine, a calmodulin antagonist. Ca2+-stimulated phosphorylation of soluble polypeptides increased with increasing Ca2+ concentration. The calmodulin antagonists chlorpromazine and trifluoperazine inhibited the Ca2+-promoted phosphorylation of soluble polypeptides. Added calmodulin promoted the Ca2+-dependent phosphorylation of a 98 kilodaltons polypeptide. Both Ca2+-dependent and Ca2+-independent phosphorylations required Mg2+ at an optimal concentration of 5 to 10 millimolar. Cyclic AMP was found to have no stimulatory effect on protein phosphorylation. Sodium molybdate, an inhibitor of protein phosphatase, increased the net phosphorylation of several polypeptides. Rapid loss of radioactivity from the phosphorylated polypeptides following incubation in unlabeled ATP indicated the presence of phosphoprotein phosphatase activity.