Type I nitroreductases of Escherichia coli

Abstract
Analysis of partially purified crude extract of Escherichia coli K12 by chromatography and gel electrophoresis has resulted in the separation of three distinct activities which catalyse the reduction of nitrofurazone (semicarbazone of 5-nitro-2-furaldehyde) in the presence of oxygen (type I nitroreductases). The major enzymatic activity (type IA), which was dependent solely on NADPH as a cofactor, was absent from nitrofurazone-resistant strains NFR 402 and NFR 502, but present in SIL 41, a strain which is only marginally resistant to the nitrofuran. The remaining nitroreductase activities (IB1 and IB2) utilize either NADH or NADPH as a cofactor. These activities coelute from DEAE-cellulose at pH 7.2, but may be differentiated by their behaviour on CM-cellulose at pH 5.8. The reductase activity missing in SIL 41 was observed in extracts of strain NFR 402 but not NFR 502. This enzyme (IB1) though retained by DEAE-cellulose had no affinity for CM-cellulose. The only reductase present in extracts of NFR 502 (a nitrofuran-resistant strain selected after two mutational events) was type IB2. This activity, also detectable in SIL 41 and NFR 402, has not been mapped genetically. An interesting feature of the type IB2 enzyme is its apparent inactivation by MnCl2 which has been routinely used as a partial purification step in the past.