Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System

Top Cited Papers
Open Access
Abstract
This paper addresses the harmonic stability caused by the interactions among the wideband control of power converters and passive components in an ac power-electronics-based power system. The impedance-based analytical approach is employed and expanded to a meshed and balanced three-phase network which is dominated by multiple current- and voltage-controlled inverters with LCL- and LC-filters. A method of deriving the impedance ratios for the different inverters is proposed by means of the nodal admittance matrix. Thus, the contribution of each inverter to the harmonic stability of the power system can be readily predicted through Nyquist diagrams. Time-domain simulations and experimental tests on a three-inverter-based power system are presented. The results validate the effectiveness of the theoretical approach.