Solvent Deuterium Isotope Effects on Phosphodiester Cleavage Catalyzed by an Extraordinarily Active Zn(II) Complex

Abstract
The effect of increasing pL on the extraordinary catalytic activity of a dinuclear Zn2+ complex toward cleavage of uridine 3‘-4-nitrophenyl phosphate (UpPNP) in H2O and D2O was determined. This change from H2O to D2O causes an increase from 7.8 to 8.4 in the apparent pKa of a catalytic functional group, but has little effect on the activity of the active form of the catalyst toward cleavage of UpPNP, so that there is no primary kinetic SDIE on the cleavage reaction from movement of a proton at the rate-determining transition state. It is concluded that essentially all of the rate acceleration for this catalyst is due to electrostatic stabilization of the transition state by interactions between opposing cationic and anionic charges.