Protection against 3'-to-5' RNA decay in Bacillus subtilis.

  • 1 December 1999
    • journal article
    • Vol. 181 (23), 7323-30
Abstract
A 320-nucleotide RNA with several characteristic features was expressed in Bacillus subtilis to study RNA processing. The RNA consisted of a 5'-proximal sequence from bacteriophage SP82 containing strong secondary structure, a Bs-RNase III cleavage site, and the 3'-proximal end of the ermC transcriptional unit. Comparison of RNA processing in a wild-type strain and a strain in which the pnpA gene, coding for polynucleotide phosphorylase (PNPase), was deleted, as well as in vitro assays of phosphate-dependent degradation, showed that PNPase activity could be stalled in vivo and in vitro. Analysis of mutations in the SP82 moiety mapped the block to PNPase processivity to a particular stem-loop structure. This structure did not provide a block to processivity in the pnpA strain, suggesting that it was specific for PNPase. An abundant RNA with a 3' end located in the ermC coding sequence was detected in the pnpA strain but not in the wild type, indicating that this block is specific for a different 3'-to-5' exonuclease. The finding of impediments to 3'-to-5' degradation, with specificities for different exonucleases, suggests the existence of discrete intermediates in the mRNA decay pathway.