Abstract
The glomeruli in the substantia gelatinosa layer of the spinal trigeminal nucleus of the cat contain three kinds of dendritic processes. One of these, the type 2 dendrite, contains large synaptic vesicles in its spine heads and in its shaft. The type 2 dendrite receives axodendritic synapses from primary trigeminal afferent (C) axons and an occasional axodendritic synapse from small axonal (P) endings with small synaptic vesicles. The type 2 dendrites in turn form dendroaxonic synapses on the C endings. The dendroaxonic synapse and the axodendritic synapse of the C ending typically occur in reciprocal pairs. The axodendritic synapse usually lies in the depths of scalloped depressions in the surface of the C ending while the dendroaxonic synapse is found on the rim of the depression. Type 1 spines, i.e., dendritic spines receiving axodendritic synapses from the primary ending and lacking synaptic vesicles, also receive dendrodendritic synapses from type 2 dendrites. The types 2 dendrite with its large, rounded synaptic vesicles is considered to be excitatory at its dendroaxonic and dendrodendritic synapses. The type 2 dendrites course from glomerulus to glomerulus receiving their excitatory input through the axodendritic synapses of C axons. A type 2 dendrite, in response to C axon excitation would activate type 1 spines directly through their dendrodendritic synapses (C→2→1) and indirectly by increasing transmitter release at the axodendritic synapses of the C axonal endings through their dendroaxonic synapses (2→C→1). The type 2 dendrites could serve two functions. First, they may prolong transmitter release from the axodendritic synapses of C axonal endings beyond the time of arrival of incoming action potentials because of the reciprocal pairing of dendroaxonic and axodendritic synapses (C⇋2). Second, they may extend the spatial range of the excitatory output of active primary afferent axons to type 1 spines of glomeruli whose primary afferent axons may be inactive (C→2→1).