Hyperbolic phase and squeeze-parameter estimation

Abstract
We define a new representation, the hyperbolic phase representation, which enables optimal estimation of a squeeze parameter in the sense of quantum estimation theory. We compare the signal-to-noise ratio for such measurements, with conventional measurement based on photon counting and homodyne detection. The signal-to-noise ratio for hyperbolic phase measurements is shown to increase quadratically with the squeezing parameter for fixed input power.