Effect of Free-Stream Turbulence on Heat Transfer through a Turbulent Boundary Layer

Abstract
Measurements in a boundary layer in zero pressure gradient show that the effect of grid-generated free-stream turbulence is to increase heat transfer by about five percent for each one percent rms increase of the longitudinal intensity. In fact, even a Reynolds analogy factor, 2 × (Stanton number)/(skin-friction coefficient), increases significantly. It is suggested that the irreconcilable differences between previous measurements are attributable mainly to the low Reynolds numbers of most of those measurements. The present measurements attained a momentum-thickness Reynolds number of 6500 (chord Reynolds number approximately 6.3 × 106) and are thought to be typical of high-Reynolds-number flows.