Polymer‐coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction
- 10 February 2004
- journal article
- research article
- Published by Wiley in The Journal of Gene Medicine
- Vol. 6 (3), 337-344
- https://doi.org/10.1002/jgm.525
Abstract
Background Site-specific gene delivery requires vectors that combine stability in the delivery phase with substantial biological activity within target cells. The use of biological trigger mechanisms provides one promising means to achieve this, and here we report a transfection trigger mechanism based on intracellular reduction. Methods Plasmid DNA was condensed with thiolated polyethylenimine (PEI-SH) and the resulting nanoparticles surface-coated using thiol-reactive poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) with 2-pyridyldisulfanyl or maleimide groups, forming reducible disulphide-linked or stable thioether-linked coatings, respectively. Results Both sets of polymer-coated complexes had similar size and were stable to a 250-fold excess of the polyanion poly(aspartic acid) (PAA). Reduction with dithiothreitol (DTT) allowed complete release of DNA from disulphide-linked coated complexes, whereas complexes with thioether-linked coating remained stable. Disulphide-linked complexes showed 40–100-fold higher transfection activity than thioether-linked ones, and activity was selectively further enhanced by boosting intracellular glutathione using glutathione monoethyl ester or decreased using buthionine sulfoximine. The chloroquine- and serum-independent transfection activity of disulphide-linked coated complexes suggests this system may provide a viable trigger mechanism to enable site-specific transfection in complex biological settings. Conclusions Linkage of hydrophilic polymer coating to PEI/DNA complexes via reducible disulphide bonds offers a means of fulfilling the contradictory requirements for extracellular stability and intracellular activity. Copyright © 2004 John Wiley & Sons, Ltd.Keywords
This publication has 31 references indexed in Scilit:
- In Vivo Gene Transfer Using Sulfhydryl Cross‐Linked PEG‐Peptide/Glycopeptide DNA Co‐CondensatesJournal of Pharmaceutical Sciences, 2003
- Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potentialGene Therapy, 2003
- HPMA copolymers with pH-controlled release of doxorubicinJournal of Controlled Release, 2002
- Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID miceHepatology, 2002
- Importance of Lateral and Steric Stabilization of Polyelectrolyte Gene Delivery Vectors for Extended Systemic CirculationMolecular Therapy, 2002
- Development of Long-circulating Polyelectrolyte Complexes for Systemic Delivery of GenesJournal of Drug Targeting, 2002
- A versatile system for receptor-mediated gene delivery permits increased entry of DNA into target cells, enhanced delivery to the nucleus and elevated rates of transgene expressionGene Therapy, 2000
- Polymeric drugs based on conjugates of synthetic and natural macromoleculesJournal of Controlled Release, 2000
- Biocompatibility of N-(2-hydroxypropyl) methacrylamide copolymers containing adriamycinImmunogenicity, and effect on haematopoietic stem cells in bone marrow in vivo and mouse splenocytes and human peripheral blood lymphocytes in vitroBiomaterials, 1989
- Controlled Release of Drug Model from N-(2-Hydroxypropyl)-methacrylamide CopolymersAnnals of the New York Academy of Sciences, 1985