Environmental Exposures and Gene Regulation in Disease Etiology
Open Access
- 1 September 2007
- journal article
- review article
- Published by Environmental Health Perspectives in Environmental Health Perspectives
- Vol. 115 (9), 1264-1270
- https://doi.org/10.1289/ehp.9951
Abstract
Health or disease is shaped for all individuals by interactions between their genes and environment. Exactly how the environment changes gene expression and how this can lead to disease are being explored in a fruitful new approach to environmental health research, representative studies of which are reviewed here. We searched Web of Science and references of relevant publications to understand the diversity of gene regulatory mechanisms affected by environmental exposures with disease implications. Pharmaceuticals, pesticides, air pollutants, industrial chemicals, heavy metals, hormones, nutrition, and behavior can change gene expression through a broad array of gene regulatory mechanisms. Mechanisms include regulation of gene translocation, histone modifications, DNA methylation, DNA repair, transcription, RNA stability, alternative RNA splicing, protein degradation, gene copy number, and transposon activation. Furthermore, chemically induced changes in gene regulation are associated with serious and complex human diseases, including cancer, diabetes and obesity, infertility, respiratory diseases, allergies, and neurodegenerative disorders such as Parkinson and Alzheimer diseases. One of the best-studied areas of gene regulation is epigenetics, especially DNA methylation. Our examples of environmentally induced changes in DNA methylation are presented in the context of early development, when methylation patterns are initially laid down. This approach highlights the potential role for altered DNA methylation in fetal origins of adult disease and inheritance of acquired genetic change. The reviewed studies indicate that genetic predisposition for disease is best predicted in the context of environmental exposures. Second, the genetic mechanisms investigated in these studies offer new avenues for risk assessment research. Finally, we are likely to witness dramatic improvements in human health, and reductions in medical costs, if environmental pollution is decreased.Keywords
This publication has 112 references indexed in Scilit:
- Nickel Stimulates L1 Retrotransposition by a Post-transcriptional MechanismJournal of Molecular Biology, 2005
- Adaptive Amplification and Point Mutation Are Independent Mechanisms: Evidence for Various Stress-Inducible Mutation MechanismsPLoS Biology, 2004
- Inhibition of proteasome activity sensitizes dopamine neurons to protein alterations and oxidative stressJournal of Neural Transmission, 2004
- Positioning the genome within the nucleusBiology of the Cell, 2004
- Epigenetic programming by maternal behaviorNature Neuroscience, 2004
- Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissuesMutation Research, 2004
- α-Synuclein Locus Triplication Causes Parkinson's DiseaseScience, 2003
- DNA methylation in cancer: too much, but also too littleOncogene, 2002
- Histones from Diabetic Rats Contain Increased Levels of Advanced Glycation End ProductsBiochemical and Biophysical Research Communications, 1995
- Compound forms of fossil fuel fly ash emissionsEnvironmental Science & Technology, 1980