Abstract
We compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Irradiation of treated and untreated cells was therefore designed to establish whether intracellular melanin protected cells from UV-induced DNA damage. In experiments described here, we determined cytosine-thymine (C-T) as well as thymine-thymine dimer levels (T-T) by high pressure liquid chromatography in cholera toxin-treated and untreated Cloudman S91 mouse melanoma cells after irradiation with UVC (< 290 nm) and UVB light (290-320 nm). Surprisingly, induction of melanization had no effect on the formation of pyrimidine dimers by UVC or UVB irradiation. These results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex.